3.4.3 \(\int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+a \sin (c+d x)}} \, dx\) [303]

Optimal. Leaf size=115 \[ -\frac {2}{5 d e (e \cos (c+d x))^{3/2} \sqrt {a+a \sin (c+d x)}}-\frac {8 \sqrt {a+a \sin (c+d x)}}{5 a d e (e \cos (c+d x))^{3/2}}+\frac {16 (a+a \sin (c+d x))^{3/2}}{15 a^2 d e (e \cos (c+d x))^{3/2}} \]

[Out]

16/15*(a+a*sin(d*x+c))^(3/2)/a^2/d/e/(e*cos(d*x+c))^(3/2)-2/5/d/e/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^(1/2)-
8/5*(a+a*sin(d*x+c))^(1/2)/a/d/e/(e*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2751, 2750} \begin {gather*} \frac {16 (a \sin (c+d x)+a)^{3/2}}{15 a^2 d e (e \cos (c+d x))^{3/2}}-\frac {8 \sqrt {a \sin (c+d x)+a}}{5 a d e (e \cos (c+d x))^{3/2}}-\frac {2}{5 d e \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((e*Cos[c + d*x])^(5/2)*Sqrt[a + a*Sin[c + d*x]]),x]

[Out]

-2/(5*d*e*(e*Cos[c + d*x])^(3/2)*Sqrt[a + a*Sin[c + d*x]]) - (8*Sqrt[a + a*Sin[c + d*x]])/(5*a*d*e*(e*Cos[c +
d*x])^(3/2)) + (16*(a + a*Sin[c + d*x])^(3/2))/(15*a^2*d*e*(e*Cos[c + d*x])^(3/2))

Rule 2750

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*m)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && EqQ[Simplify[m + p + 1], 0] &&  !ILtQ[p, 0]

Rule 2751

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*Simplify[2*m + p + 1])), x] + Dist[Simplify[m + p + 1]/(a*
Simplify[2*m + p + 1]), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m
, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + p + 1], 0] && NeQ[2*m + p + 1, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {1}{(e \cos (c+d x))^{5/2} \sqrt {a+a \sin (c+d x)}} \, dx &=-\frac {2}{5 d e (e \cos (c+d x))^{3/2} \sqrt {a+a \sin (c+d x)}}+\frac {4 \int \frac {\sqrt {a+a \sin (c+d x)}}{(e \cos (c+d x))^{5/2}} \, dx}{5 a}\\ &=-\frac {2}{5 d e (e \cos (c+d x))^{3/2} \sqrt {a+a \sin (c+d x)}}-\frac {8 \sqrt {a+a \sin (c+d x)}}{5 a d e (e \cos (c+d x))^{3/2}}+\frac {8 \int \frac {(a+a \sin (c+d x))^{3/2}}{(e \cos (c+d x))^{5/2}} \, dx}{5 a^2}\\ &=-\frac {2}{5 d e (e \cos (c+d x))^{3/2} \sqrt {a+a \sin (c+d x)}}-\frac {8 \sqrt {a+a \sin (c+d x)}}{5 a d e (e \cos (c+d x))^{3/2}}+\frac {16 (a+a \sin (c+d x))^{3/2}}{15 a^2 d e (e \cos (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 56, normalized size = 0.49 \begin {gather*} \frac {2 \left (-7+4 \sin (c+d x)+8 \sin ^2(c+d x)\right )}{15 d e (e \cos (c+d x))^{3/2} \sqrt {a (1+\sin (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Cos[c + d*x])^(5/2)*Sqrt[a + a*Sin[c + d*x]]),x]

[Out]

(2*(-7 + 4*Sin[c + d*x] + 8*Sin[c + d*x]^2))/(15*d*e*(e*Cos[c + d*x])^(3/2)*Sqrt[a*(1 + Sin[c + d*x])])

________________________________________________________________________________________

Maple [A]
time = 0.15, size = 54, normalized size = 0.47

method result size
default \(-\frac {2 \left (8 \left (\cos ^{2}\left (d x +c \right )\right )-4 \sin \left (d x +c \right )-1\right ) \cos \left (d x +c \right )}{15 d \left (e \cos \left (d x +c \right )\right )^{\frac {5}{2}} \sqrt {a \left (1+\sin \left (d x +c \right )\right )}}\) \(54\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/15/d*(8*cos(d*x+c)^2-4*sin(d*x+c)-1)*cos(d*x+c)/(e*cos(d*x+c))^(5/2)/(a*(1+sin(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 258 vs. \(2 (88) = 176\).
time = 0.57, size = 258, normalized size = 2.24 \begin {gather*} -\frac {2 \, {\left (7 \, \sqrt {a} - \frac {8 \, \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {25 \, \sqrt {a} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {25 \, \sqrt {a} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {8 \, \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {7 \, \sqrt {a} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3} e^{\left (-\frac {5}{2}\right )}}{15 \, {\left (a + \frac {3 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}}\right )} d {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-2/15*(7*sqrt(a) - 8*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 25*sqrt(a)*sin(d*x + c)^2/(cos(d*x + c) + 1)^2
+ 25*sqrt(a)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 8*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 7*sqrt(a)*s
in(d*x + c)^6/(cos(d*x + c) + 1)^6)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3*e^(-5/2)/((a + 3*a*sin(d*x + c
)^2/(cos(d*x + c) + 1)^2 + 3*a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + a*sin(d*x + c)^6/(cos(d*x + c) + 1)^6)*d*
(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2))

________________________________________________________________________________________

Fricas [A]
time = 0.32, size = 77, normalized size = 0.67 \begin {gather*} -\frac {2 \, {\left (8 \, \cos \left (d x + c\right )^{2} - 4 \, \sin \left (d x + c\right ) - 1\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{15 \, {\left (a d \cos \left (d x + c\right )^{2} e^{\frac {5}{2}} \sin \left (d x + c\right ) + a d \cos \left (d x + c\right )^{2} e^{\frac {5}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-2/15*(8*cos(d*x + c)^2 - 4*sin(d*x + c) - 1)*sqrt(a*sin(d*x + c) + a)*sqrt(cos(d*x + c))/(a*d*cos(d*x + c)^2*
e^(5/2)*sin(d*x + c) + a*d*cos(d*x + c)^2*e^(5/2))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )} \left (e \cos {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))**(5/2)/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a*(sin(c + d*x) + 1))*(e*cos(c + d*x))**(5/2)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 6.68, size = 120, normalized size = 1.04 \begin {gather*} -\frac {8\,\sqrt {a\,\left (\sin \left (c+d\,x\right )+1\right )}\,\left (8\,\cos \left (c+d\,x\right )+6\,\cos \left (3\,c+3\,d\,x\right )-\sin \left (2\,c+2\,d\,x\right )+2\,\sin \left (4\,c+4\,d\,x\right )\right )}{15\,a\,d\,e^2\,\sqrt {e\,\cos \left (c+d\,x\right )}\,\left (4\,\sin \left (c+d\,x\right )+4\,\cos \left (2\,c+2\,d\,x\right )-\cos \left (4\,c+4\,d\,x\right )+4\,\sin \left (3\,c+3\,d\,x\right )+5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cos(c + d*x))^(5/2)*(a + a*sin(c + d*x))^(1/2)),x)

[Out]

-(8*(a*(sin(c + d*x) + 1))^(1/2)*(8*cos(c + d*x) + 6*cos(3*c + 3*d*x) - sin(2*c + 2*d*x) + 2*sin(4*c + 4*d*x))
)/(15*a*d*e^2*(e*cos(c + d*x))^(1/2)*(4*sin(c + d*x) + 4*cos(2*c + 2*d*x) - cos(4*c + 4*d*x) + 4*sin(3*c + 3*d
*x) + 5))

________________________________________________________________________________________